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Abstract

Local class field theory was originally proved via global class field theory, and there
was no explicit description of the local Artin map and the maximal abelian extension & *
of a local field K. In 1965, Lubin and Tate constructed an explicit form of the local Artin
map and K from formal group laws. In 1979, Coleman proved an interpolation theorem
on division values in local fields by constructing a norm operator depending on Lubin-
Tate formal group laws. On the other hand, in topology, Ando established an algebraic
criterion on when a complex orientation MU — FE,, for Morava E-theory is an H.,-map.
The criterion relates desired orientations to a specific property of formal group laws.

This thesis has two parts. Firstly, we prove explicit local class field theory following
of Lubin and Tate. Secondly, we give a new proof of Ando’s theorem in topology via

Coleman’s norm operator from explicit local class field theory.

Keywords: local class field theory, Lubin-Tate formal group law, Coleman norm operator,

Morava E-theory, complex orientation
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1 Introduction

1.1 Local Class Field Theory

The motivation of class field theory is to generate all the Galois extensions of a field from the
information of the field itself. In particular, local class field theory wants to generate all the
Galois extensions of a local field.

Historically, local class field theory arises from a problem proposed by Emil Artin(1929)
that whether one can generalize the norm residue symbol to arbitrary fields that do not contain
n-th roots of unity [FLR14]. Helmut Hasse(1930) solved this problem using the global Artin
reciprocity law. For an abelian extension L/K (K, L may not be local fields), « € K* and v a
place of K, the generalized norm residue symbol («, ./ K), is an element in the decomposition
group of any w | v [Con]. It is an analogy of Hilbert’s symbol. The precise definition of the
norm-residue symbol requires global class field theory. This led Hasse to the discovery of local

class field theory. We first need a lemma to see this.

Lemma 1.1. Suppose F/K, is a finite field extension for some number field K and a finite
place v of K, where K, is the completion of K with respect to v. Then there exists a number
field L/K such that F' = LK,, [L : K| = [F : K,| and F = L,, for some place w of L

extending v.

Proof. Suppose F' = K,(a) and f € K,[X] is the minimal polynomial of o over K,. By
[Hu21, Corollary 3.2.16], there is a separable and irreducible polynomial g € K[X] close
enough to f with deg(g) = deg(f) such that K,(8) = F for some root § of g. Then [F :
K,] = deg(f) = deg(g) = [K(B) : K]. Since F is a finite extension of a complete field K,
F is itself complete. Since F' D L := K(f3), F is a completion of L with respect to some

valuation w of L. ]

Here is how local class field theory shows up: Given an abelian extension F'/K,, there
exists a field extension L /K such that F' = LK,, [L : K| = [F : K,| and F = L,, for some
place w of L extending v by the lemma. Thus, Gal(F/K,) = Gal(L,/K,). Note that there
is a natural inclusion Gal(L,,/K,) — Gal(L/K) by ¢ — 0|1, mapping Gal(L,,/K,) to the
decomposition group of w | v. For any a € K*, let (o, '/ K,,) be the image of (o, L/K), in



Gal(F/K,). Therefore, we get a homomorphism
K* — Gal(F/K,) aw— (a,F/K,)

The definition of (o, L/K), implies that (o, L/K), = Id when v(«) is large enough [Con].
Thus, the above map can be extended to K — Gal(F'/ K, ), which is now called the local Artin
map.

As discussed above, local class field theory is derived from the global class field theory
originally and there is no explicit description of the local Artin map. The significance of the
proof by Lubin and Tate is to give an explicit description of the local Artin map and the maximal

abelian extension K.

1.2 Relationship between Local Class Field Theory and Algebraic Topol-

ogy

An important tool used in Lubin and Tate’s proof is the Lubin-Tate formal group law. Suppose
a prime number p is an uniformizer of the local field, i.e., the local field is an unramified ex-
tension of (Q,. Then Lubin-Tate formal group law reduces to a Honda formal group law over
the residue field, whose p-series is of the form 77" for some positive integer n. In 1979, Cole-
man [Col79] proved an interpolation theorem on division values in local fields by constructing

a norm operator .47 depending on Lubin-Tate formal group law F' such that

Nr(g) o [plr(T) = 11 go F(T,X)
A 1s a root of [p)p

where [p]r is the p-series of F.

On the other hand, there is a series of significant complex oriented spectra in algebraic
topology called Morava E-theories F,,, whose coefficient ring (E,,). classifies deformations of
a formal group law of height n over some perfect field of characteristic p to some complete
local ring R. Morava E-theories carry important structure on the cohomology theory called
power operation (cf. [GHO04, Corollary 7.6] and [BMMSS86]). Suppose MU is the complex
cobordism theory. It is well-known that MU admits power operation as well(cf. [May77, §1V.2]
and [BMMSS86]). We also know that a complex orientation on F,, is same to a map between ring

spectra MU — E,,. Ando [And95, Theorem 4] gave a criterion about when power operations



on MU and E),, are compatible under such a map in terms of the formal group law F' associated
to the complex orientation in the case that (E),). classifies the deformation of a Honda formal

group law. The formal group law satisfies the criterion if

plp(T) = I1 (T, A)
A 1s a root of [p|r
Rezk conjectured that the norm operator and Ando’s theorem are closely related.
Following Rezk’s idea, we will prove Ando’s theorem via Coleman norm operator. The
original definition of the norm operator only applies to the special case when R is a complete
DVR with uniformizer p. Therefore, we will generalize the definition of the norm operator to

complete local domain with p # 0. In particular, (£, ), satisfies such conditions.

1.3 Outline of the Thesis

Section 2 will prove the main theorems of local class field theory via Lubin-Tate formal group
law.

Section 3 is a quick introduction to Ando’s theorem. We will omit most details and only
provide necessary background knowledge of the theorem.

Finally, Section 4 is the proof of Ando’s theorem via Coleman norm operator.

Section 2 and Section 3 are separate parts in algebraic number theory and algebraic topology
respectively. To understand Ando’s theorem in Section 4, one needs knowledge from Section

3. The proof of Ando’s theorem is based on Subsection 2.2 and part of Subsection 2.3.

2 Local Class Field Theory and Proof by Lubin-Tate Formal

Group Laws

2.1 Statements of Main Theorems
By alocal field, we mean a field K that is one of the following cases:
1. K = R or K = C with the usual absolute value.

2. K is complete with respect to a discrete valuation whose valuation ring has finite residue

field.



By [Hu21, Proposition 4.1.4], the latter case is either a finite extension of , or a finite ex-
tension of F,,((7")). The former one is called archimedean while the latter case is called non-
archimedean.

Let K be alocal field and K% > K% > K" be its algebraic, separable and abelian closure
respectively. Let Ok be the integer ring of K and m be the maximal ideal of Ox and k = Ok /m
is the residue field with ¢ elements, where ¢ is a power of a prime number p. Suppose L/ K is
a finite extension, Nm, k() is the norm of « € L with respect to L/ K.

Let Gal( K/ K) be the Galois group of K /K. We assign Krull topology to Gal(K*/K),
i.e., Gal(K“/E) forms a fundamental system of neighborhoods of 1 in Gal(K*/K), where E
runs through all finite abelian extensions of K.

The main theorems of the abelian local class field theory are the following:

Theorem 2.1 (Local Reciprocity Law). Suppose K is a non-archimedean local field. There

exists a unique homomorphism
br: K* — Gal(K®/K)

satisfying:

(a) For any uniformizer w of K, ¢ () is the Frobenius element of Gal( K"" | K) under the
restriction Gal(K®/K) — Gal(K"™/K).

(b) For any finite abelian extension L of K, there is an exact sequence:
1 = Nmpx(L*) = K* = Gal(L/K) — 1

where the latter map is the composition of ¢ and the restriction map. This induces an
isomorphism

¢r/x: K*/Nmpjx(L*) = Gal(L/K)
In particular, [K* : Nmp i (L*)] = [L : K|.
The map ¢,k is then called the local Artin map.
The following corollary can be deduced from Theorem 2.1.

Corollary 2.2. Let K be a non-archimedean local field. Assume that Theorem 2.1 is true. Then



(@)

(b)
(c)
(d)

The map L — Nm(L") is as order-reversing bijection between abelian extensions of K

and norm groups in K*.
Nm((L : L’)*) = Nm(L*) N Nm(L"™).
Nm((L N L’)*) = Nm(L*) - Nm(L"")

If a subgroup of K* contains a norm group, then it is a norm group itself. Here the norm

groups are Nm(L*) where L/ K is an abelian finite extension.

Proof. We prove in the order of (b)—(a)—(d)—(c).

(b)

(a)

(d)

(©)

If L C L/,Nm(L"™) C Nm(L*) since Nmy//x = Nmy/x o Nm, /. Thus,
Nm((L-L')*) € Nm(L*) " Nm(L")

Conversely, for any a € Nm(L*) N Nm(L""), both ¢k (a), ¢r//k(a) are identities
by Theorem 2.1. Since ¢L.L//K(a)|L = gbL/K(a) and ¢L.L//K(a)|y = Qﬁy(d), a €
ker(¢L.L1/K) = Nm(L : L,)

We first show that the map in (a) is order-reversing. If Nm(L*) D Nm(L"*), Nm(L"") =
Nm((L - L')*) by (b). Since

[L-L':K]=[K*:Nm(L-L)] =[K*:Nm(L")] = [L: K]
we have L - L' = L. Thus, L' D L. Therefore, L — Nm(L*) is order-reversing. It
follows that this map is injective. By definition, this map is surjective.

Let N = Nm(L*) be a norm group and N’ D N is a subgroup of K*. Let L’ be the
subfield of L fixed by ¢,/ (IN'/N). Then N'/N is the kernel of the composition

K*/N "4 Gal(L/K) — Gal(L'/K)
The composition is same to ¢,/ x. Thus, K*/N' = Gal(L'/K) given by ¢ /x. Hence,
N’ =Nm(L"™).

Note that Nm(L*) - Nm(L'") is the smallest subgroup in K* containing both Nm(L*) and
Nm(L'"™), and it is a norm group by (d). On the other hand, L N L’ is the biggest field
contained in both L, L'. They must accord by (a).
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]

Theorem 2.3 (Local Existence Theorem). The norm subgroups in K* are equivalent to the

open subgroups of finite index in K*.

The goal of this section is to prove Theorem 2.1 and Theorem 2.3.

The following remarks of the main theorems are essential to the proof. Recall in the finite
case, if L/K is a totally ramified extension of degree n and F'/K is an unramified extension
of degree m, then LF/K is of degree mn (Here we do not require K, L, F’ to be local fields).
Actually K can also be decomposed into the composition of a maximal unramified extension
and a maximal totally ramified extension as follows.

Given the isomorphisms
¢ K*/Nm(L*) — Gal(L/K) = Gal(K*’/K)/Gal(K**/L)
for each finite abelian extension L of K, by passing to the limit we get an isomorphism:
o K* — Gal(K*/K)

where K * is the profinite completion of K * since Nm(L*) are all open subgroups of finite index
in K* by Theorem 2.3.

Now choose an uniformizer 7 of K. We have
K@U x 1l 2Ux X Z

Lemma 2.4. Under the decomposition above, lim,en» men- K*/((l +m") X mZ) ~ K.

Proof. 1t suffices to show that for any open subgroup of finite index H in K*, H contains
some (1 +m™) x mZ. Since H is open and (1 + m”) x {0} forms a fundamental system of
neighborhoods of 1 in K*, H D (1 + m™) x {0} for some n. Moreover, H contains a un” for
some integer  and u € Ug. Since Uk /(1 + m™) is a finite group, u* € (1 + m") for some

integer s. Therefore, H D (1 +m"™) X rsZ. O

Since Uy is profinite with respect to 1 + m”, we have



It is well-known that profinite topological groups are equivalent to compact Hausdorff to-
tally disconnected topological groups. Since Uy, Z are profinite, they are compact. Because
K* is Hausdorff, both U K,Z are closed subgroups in K*. Since Z is dense in Z, 7 =7
in K*. Let K, = (K%®)x(™ and K = (K®)%x(Ux)_ Then by infinite Galois theory,
Gal(K®/K,) = Z and Gal(K®/K"") = Uy. Thus, K, is the union of finite abelian ex-
tensions L such that 7 € Nm(L*), which are totally ramified, and K" is the union of finite
abelian extensions L such that Nm(L*) D Uy, which are unramified. We deduce that K" is
the maximal unramified extension of K in K% and K** N K, = K. Thus, Gal(K,K""/K) =
Gal(K,/K) x Gal(K*"/K) = U x Z. Hence, K% = K K"",

Under such view of point, we can show the uniqueness of ¢ .

Lemma 2.5. Assume that Theorem 2.3 is true. Then there exists at most one homomorphism

¢: K* — Gal(K®/K) satisfying the conditions in Theorem 2.1.

Proof. We know that K% = K""K_. If there is a ¢ satisfies the conditions in Theorem 2.1,
then ¢(7)|gun is the Frobenius element for any uniformizer 7 of K. Since K is fixed by ¢()
from above discussion, the value of ¢(7) is determined for all uniformizer 7. Because K* is

generated by uniformizers 7 of O, the value of ¢ is uniquely determined. O]

Note that we know the restriction of the local Artin map on K™" is the Frobenius element.

The proof of local class field theory consists of several steps:

(a) Constructing the fields K", K. discussed above and the restriction of the local Artin
map Uy — Gal(K,/K).

(b) Extend the map to ¢,: K* — Gal(K,K""/K).

(c) Show that the composition K, K"" and the associated map ¢, are independent of the

choice of 7.
(d) Show that K, K" = K.
(e) Show that ¢, satisfies the condition (b) of Theorem 2.1.

The construction of K" will be displayed in the following of this subsection. The remaining
parts are (a)(b)(c) are done in Subsection 2.3. Then (d) is proved in Subsection 2.4. Finally, (e)

1s shown in Subsection 2.5.



Example 2.6. Suppose K = Q, for some prime number p and pick the uniformizer m =
p. By Kummer-Dedekind Theorem, for each positive integer n, Q,(u,)/Q, is unramified if
(n,p) = 1 and is totally ramified if n = p’ for some positive integer i. Moreover, the Galois
group Gal(Q,(11,)/Qy) is (Z/nZ)*. By taking the colimit, we see that the Galois groups of
(U(n,p)_1 @p(un)) /Q, and (Uf: Qp(upi)) /Q, are Z.and (Z,)* respectively. Thus, we have

<@p>w=Q@p<um> anz( U @pmn))

(n,p)=1

By above discussion,
= ( U @) (Um)
(np)=1 i=1
The above method of construction ;" applies to arbitrary local field K. Suppose p { n,
{, is the primitive n-th root of unity over K and L = K (u,). Suppose @, (¢) is the minimal
polynomial of y,, over K and ®,(t) is the reduction of ®,(t) to the residue field k. Thus,
®,,(t) | (t" — 1), so it is separable. By Hensel’s Lemma, ®,,(t) is also irreducible. Thus, ®,,()

is the minimal polynomial of /i, over k. Therefore,
[L: K] =deg®,(t) = deg ®,(t) = [k(11,) : k] < [l : k] < [L : K]

where [ is the residue field of L. Hence, [L : K| = [l : k] implying that L/ K is unramified.
By field theory, we know that [ = k(yz,) is the splitting field of 7" — ¢, where f is the smallest
number such that n | (¢/ — 1). Therefore, (U(n,p)l K (,un)> /K is an unramified extension
and has the residue field k, implying that K" = U py=1 K (1)

However, we cannot simply add of roots of unity to K to construct K. Indeed, if K =
F,((T)), then K itself contains p’-th roots of unity. Lubin-Tate theory generalizes this method
to arbitrary local field via Lubin-Tate formal group laws. If we let G,,, to be the multiplication
formal group law on Z,, i.e., G,,(X,Y) = X + Y + XY, then there exists a natural map
Z — End(G,,) given by n — ((1+ T)™ — 1). Then we see that (44,; — 1) is a p"-torsion point
of Gy, Thus, Q,(f1,:) = Qp(p,i — 1) can be viewed as adding p”-torsion points in Q.

10



2.2 Lubin-Tate Formal Group Laws

Note that for power series f, g, h, f o (g + h) # f o g+ f o hin general. In order to make the
distribution law possible, we need to rewrite the addition. Suppose F' is the new addition. Then

weneed f o F'(g,h) = F(f og, foh). We use the formal group law to capture this.

Definition 2.7 (One-Parameter Commutative Formal Group Law). Let R be a commutative
ring. A (commutative one-parameter) formal group law is a power series F' € R[X,Y]

satisfying that
(@) F(X,Y)=X+Y (mod (X,Y)?).
(b) (Associativity) F (X, F(Y,2)) = F(F(X,Y), Z).
(c) (Commutativity) F(X,Y) = F(Y, X).

We can prove that with the conditions (a)(b), there exists a unique ix(7") € R[T"] such that
F(X,ip(X)) =0.

We denote End(F') by the set of f € R[T] such that f o F(X,Y) = F(f(X), f(Y)) and
f+rg = F(f,g). Then we see from the beginning of this subsection that End(F') admits a

ring structure with the addition + 7 and the multiplication o.
Definition 2.8. Let 7. be the set of f(7T") € Ok [T] such that
(@ f=xT (mod T?).
(b) f=T7 (mod 7).
Example 2.9. Let K = Q,, m = p. Then f(T) = (1 +T)? — 1 lies in F,,.

Lemma 2.10. Suppose f,g € Fr and ¢1(X1,---,X,) € Og[Xy, -+, X,] is linear. Then

there exists a unique ¢ € Ok[ X1, , X,] such that
(@) ¢ = ¢ (mod (Xq, -+, X,)%).

Proof. The idea is doing induction on the degree of ¢ and taking the limit, i.e., show that there

exists a unique polynomial ¢, (X3, - -+ , X,,) of degree r such that

¢r = ¢ (mod (X1, -, X,)?)

f(¢T(X17 e aXn)) = ¢r(g(X1)a T 79(Xn)) (HlOd (Xl, e 7Xn)T+1)

11



When r = 1, this is just ¢;.
Suppose r > 1 and the above statement holds for » — 1. Then we need to show that there is

a unique homogeneous polynomial v, of degree r such that ¢,_; + 1), satisfies

f % <¢r71 + wr> = <¢r71 + ¢r> cg (HlOd (Xh e ;Xn)rJrl)

Equivalently, we have

Jobra+mp=¢ 109+t om (HIOd (Xb T 7Xn)r+1>

fop1—¢_10g= (7Tr - 7T)¢r (mod (Xla T 7Xn)r+1)
by = fodr1—¢r_10g

m(rr=1 —1)

(mod (Xy,---, X))
The uniqueness is proved. Note that
f © ¢T—l - ¢r—1 °g= ¢3—1(Xla U 7Xn) - ¢r—1(X1q> e 7XZ) =0 (HlOd 7T)

Thus, 1, is the degree r part of %. Let ¢ = ¢1 + 12 + 93 + - - -. Then ¢ satisfies

condition (a). Note that for each r,

fop=fod,=¢p,09g=¢og (mod (X, ---,X,)" )

Thus, fop =¢og. ]
The following three propositions can be deduced by repeatedly applying the above lemma.

Proposition 2.11. For every f € F,, there is a unique formal group law Fy € Ok[X,Y]

admitting | as an endomorphism.

Proposition 2.12. For f,g € F, and a € Ok, let [al, s be the unique element of O[] such

that
(@) laly; = aT (mod T?).

(b) golalgy = lalgsof.

Then [aly ¢ is a homomorphism from F to F,.

12



Proposition 2.13. For any a,b € Ok, we have [a + blg s = la]gs +F, [b]gs and [ably; =

[alhg © [Blg.s-

This proposition has two direct corollaries.
Corollary 2.14. Forany f,g € F,, we have 'y = F,.
Proof. Given every u € O, [u];, and [u™!], ; are inverse to each other. O
Corollary 2.15. For each a € Ok, there is a unique endomorphism [a|s: Fy — Fy such that
la]f = aT (mod T?). The map

Ok — End(Fy): a — [a]y

is a ring isomorphism. In particular, we have [t|; = f.

The formal group law F'; associated to an uniformizer 7 is called the Lubin-Tate formal

group law.

Example 2.16. When K = Q,, m =p, f(I') = (1+T)? -1, Fy =G,, = X +Y + XY is the
multiplicative formal group law. When a € Z, the power series |a|f = (1 +T)* — 1. This can

be extended to 7.,. For any a € 7Z,,

e L O

m=0

By continuity, (%) € Zy, and [a]; :== (1 +T)* — 1) € End(G,,).

Example 2.17. When K = F,((Z)), the general situation is complicated. A simple example is
the case of p = 2. f(T) = ZT +T?* € Fr. Then F; = G, = X + Y is the additive formal

2
T

Z(Z2'-1-1)

o0

group law and [aly = > ", a;T?', where ag = a and a; = fori > 1. The formula is

obtained by going through the proof of Lemma 2.10.

2.3 Construction of /{; and the Local Artin Map

Forany f € F,,let Ay = {o € K% : |a| < 1}. Define a Ox-module structure on A by
a+fB:=a+p fanda-a = [a]f(a). Let Ay, be the submodule of A consisting of elements
killed by [r]’.

13



Remark. The canonical isomorphism (1), : Fy — F, induces isomorphisms Ay — A, and

N¢y — Ay for each n.

Proposition 2.18. For each n, we have that Ay, = O /(n") as Ox-modules. Therefore,

End(My,) = O /(n") and Aut(Ay,) = (O /(7).

n

Proof. By the above remark, it suffices to take f = 77"+ 7. Thus, [1"]; = 7"T 4 .- - +T7".
From the Newton polygon of [7"] ;, we see that all the roots of [7"] lie in Ay,,.

Since f = 71"+ T is an Eisenstein polynomial, f is irreducible and has ¢ distinct roots.
Thus, Ay, has exactly ¢ elements. By the structure theorem of modules over PID, Aj; =
Ok /() since Ok /(7™) contains ¢" elements.

Foreach a € K% with |a| < 1, f(T) —a =T9+---+ 7T — . From the Newton polygon
of f(T') — a, we see that all roots of f(7") — « lie in A;. Therefore, [7] is surjective.

Suppose Ay, = Ok /(") for some n. Since [7]; is surjective, we have the following exact
sequence:

0— Af71 — Af,n+1 [W—]{ Afm —0

n+1

Thus, A1 has ¢""' elements. Suppose Af,, 11 = Ok /(7™) & - - - O /(7"") by the structure

theorem of modules over PID. Then the exact sequence implies that A;; = (771)/(7™) &

<@ (71 /(7). Therefore, r = 1and Ay, 1 = Ok /(7). O
Lemma 2.19. Every subfield E in K% containing K is closed in the topological sense.

Proof. Let G = Gal(K®/E). By the uniqueness of the extension of the absolute valuation,

|7()|| = || - || for any 7 € G. Suppose x € E is a limit of z,, € E. Then
I7(2) = x| = [I7(z = z)]]
also converge to zero, so 7(x) € E. Therefore, £ = (K*)% = E. O

Theorem 2.20. Let K, = K(Ay,,). Then we have

(a) K, is independent of the choice of f.
(b) Foreachn, K, /K is a totally ramified extension of degree (q — 1)q" ',

(c¢) The action of Ok on A,, induces an isomorphism

(O /m")" = Gal(K,,,/K)

14



(d)

Proof.

(b)(c)

(d)

Thus, K., /K is an abelian extension.
For each n, we have 1 € Nm(K, ).

(a) Suppose g € F. Via the isomorphism [1], s: As,, — Ay, we have that

— e~

K(Ag,n) = K([l]gJ(Af,n)) C K<Af7n) - K([l]f,g(Ag,n» - K(Ag,n)

—_—

Thus, K (Ay,) = K(Ay,,). By the above lemma,

—_—

K(Agn) = K(Ag,,) N K% = K(Asp) N K = K(Ay,,)

Since K, is independent on the choice of f, we may assume again that f = [7]; =
'+ -+ 19,
Choose a nonzero root 71 of f and 7y, of f(X) — 7 foreachs =1,2,--- ,n—1. Then

there is a sequence of field extensions:
K(my,) D K(mp—1) D -+ D K(m) D K

Note that each extension is Eisenstein, so each K (m,,)/K is totally ramified. The degree
of K(m)/K is ¢ — 1 and the degree of K (m,.1)/K(7,) is q for each s. Therefore,
K(m,)/K is a totally ramified extension of degree ¢" (¢ — 1). Since [7"];(7,) = 0,
K(Apn) D K(my).

Since K (Ay,,) is the splitting field of [7"]; over K, Gal(K (Ay,,)/K) is isomorphic to
a subgroup of permutations on Ay,. It is easy to show the action of Gal(K (Ay,,)/K)
on Ay, is compatible with the A-module structure on Ay,. Thus, Gal(K (A;,)/K) <
Aut(Ay,) = (Ok/(7™))". Therefore,

(¢ =1)g" " = (Ox /()| = [K(Agn) /K] > [K(m) /K] = (¢ = 1)g""!

Hence, K (A;,) = K(m,) is a totally ramified extension of degree (¢ — 1)¢" ! over K
and Gal(K, ,,/K) = (Og/m")* and u € O} acts on Ay, by [u];.

Since the degree of [7"];(T)/T = 7 + --- + TW D" " is (¢ — 1)q", it is the minimal

polynomial of 7,, over K. Hence, Nmg_ /(7)) = (1)@ D" so 7 e Nm(K?,).
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]

Let K = Uy, K, ,. By passing to the limit, we have that (Ef: Uk = Gal(K,/K) given
by u — [u!];. The inverse here will make the formula elegant in the future.

Let ¢5: K* — Gal(K,K""/K) given as follows: for each a = un™ € K*, ¢¢(a)|xun
is the m-th power of the Frobenius element and ¢;(a)(\) = ¢;(u)(\) = [u=];()\) for all
Ae Ul A

Next, we want to show that K K"" and ¢ are independent of the choice of 7, f. Note
that in the proof of the part (a) of Theorem 2.20, the essential part is the Og-isomorphism
g5 Ay — Ay, where [1], ; is a power series with coefficients in O. We also want such
an isomorphism for different uniformizers. Now suppose 7, w are two uniformizers of Ok and
w = ur for some u € Ug. Let B, B be the integer ring of K", Kun respectively. Suppose we
have such a Og-isomorphism 0: Ag,, — Ay, where f € F, g € F,, and 0 is a power series
with coefficients in B (Since we took completion in the proof of the part (a) of Theorem 2.20,
the coefficients of # to can be taken in B and the proof of part (a) of Theorem 2.20 still work).
We need to explore properties 6 needed for proving that ¢ is independent of , f.

In order to show that ¢, = ¢, it suffices to show that they agree on every uniformizer
of Ok. Given any uniformizer 7’ of Ok, ¢(7')|gun = ¢y(7’)|kun is the Frobenius element.
Suppose ™ = vm = vu~lw. Let 67 be the power series obtained by acting o on each coefficient

of 6. Then for each A € Ay,

65(m) (0(N) =07 (6 (v)(N)) = 07 0 [v™1];(N)

We expect that the right-hand side is equal to ¢, (') (A(N)) = [uv™]y 0 O(X) = 0 o [uv~];(N)
since # is a Ox-homomorphism. Therefore, we need that #” = 6 o [u];. This implies that ¢
induces isomorphisms A, — A, because (g o )7 =6 o [un|f = [w],00 = go 0.

Suppose 0(T) = €T + - - - for some ¢ € B. Then o(¢) = eu. We claim that o(-)/-: B — B
is surjective while it is not true that o(-)/-: B — B is surjective. That is why we require the

coefficients of 6 to be in B.
Lemma 2.21. The homomorphism o(-)/-: B* — B* is surjective with kernel O%.

Proof. Let n be the maximal ideal in B. It suffices to show that the sequence

1= (Og/m™)* — (B/n) " (B/mmy =1
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is exact for each n and then pass to the limit.
Forn = 1, B/n = k% and the result follows easily. Assume that the sequence is exact for
n — 1. Then we have the following diagram:

1 1

By the snake lemma, o(-)/-: (B/n")* — (B/n")* is surjective with kernel of ¢" elements.
Since (Ok /m™)* contains ¢" elements and is contained in the kernel, the kernel is (O /m™)*.

]

The following proposition says that there exists the required 6 € B [T7], so it finishes the

proof that K K*" and ¢ are independent on the choice of 7, f.

Proposition 2.22. Let f € F, and g € F,,, where w = um are two uniformizers of Ok. Then

there exists an € € B* such that o(¢) = eu and a power series § € B[T] such that
(@) O(T) = €T (mod T?).
(b) 6° =00l
(©) O(FH(X,Y)) = F,(0(X),0(Y)).
(d) 0ola]; =laly 0.
Proof. The proof has four steps:

1. Show that there exists a f € B[[T ] satisfying (a)(b). This can be shown by induction on

the degree of 6 as Lemma 2.10.

2. Show that the 6 in the first step can be chosen so that ¢ = 67 o f o 0!, Let h =
6° o foO~'. Then show that h € O[T7]. Let ¢’ = [1], o 6. Then ¢’ satisfies (a)(b) and
(0")7 0 fo(0) " =[lgnohol]n, =g
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3. Show that e(Ff (9—1(X),9—1(Y))) — F,(X,Y).
4. Show that o [a]; 0 67! = [a],.

Both the third and the fourth steps can be shown by directly applying Lemma 2.10. For details,
see [Mil20] Proposition 3.10. ]

2.4 Local Kronecker-Weber Theorem

The main propose of this section is to prove the following theorem:
Theorem 2.23. (Local Kronecker-Weber Theorem) K, K" = K.

Lemma 2.24. Suppose L is an abelian extension of K, of degree m. Let K,, be the unique
unramified extension of K, of degree m. Then there exists an abelian totally ramified subex-

tension Ly/ K, of L/ K, such that L C L,K,, = LK,,.

Proof. Note that Gal(LK,,/K) is a subgroup of Gal(L/ K ) x Gal(K,,/ K ), so every element
in Gal(L K,/ K) has torsion m. Pick a 7 € Gal(LK,,/K) such that 7|, is the Frobenius
element. Then 7 has order m in Gal(LK,,/K,). By the structure theorem of finite abelian
groups, we have that Gal(LK,,/K,) can be decomposed into (7) x H for some subgroup
H < Gal(LK,,/K,). Let L, = L. Then L, N K,,, = K, since Gal(K,,/K,) = (7|x,,), s0
L,/ K, is totally ramified and Gal(L,/K,) = H. Therefore, L, K,, = LK,, D L. O

Remark. The above proof actually works for all henselian valuation field with finite residue

field K and finite abelian extension L/ K.
Lemma 2.25. Any abelian totally ramified extension of K, equals K.

Proof. See [Mil20] Lemma 4.9.
Suppose L/K is an abelian totally ramified extension. The idea is that Gal(L/K,) =
No—, Gal(L/K, ) = 1. In fact, Gal(L/K,) is some ramification group of Gal(L/K), so

their intersection is trivial. U
Lemma 2.26. Suppose L is a finite unramified extension of K. Then L C K, K"".
Proof. We have L = K, («) for some o € K. Suppose f € Ok_[T] is the minimal polyno-

mial of a over K. Then f € Ok, ,[T'] for some n. Since L /K is henselian, f is irreducible in
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the residue field of K, which is the same with the residue field of K ,,. Thus, K, (a)/K .,
is unramified. Suppose U/K is the maximal unramified subextension of K ,(«)/K, so the
residue field of U equals the residue field of K ,(«). Then [U : K] equals the inertia in-
dex of K, ,(a)/K, so [U : K] = [Kyn(a) : Ky, Thus, K, (o) = UK,,. Hence,
L =K. UCK,K". U

Proof. (of Theorem 2.23): Suppose L/ K is a finite abelian extension. Then LK, /K, is also a
finite abelian extension. Thus, there exists a totally ramified extension L,/ K and an unramified
extension K, /K, such that LK, C L;K,,. By the two lemmas above, L, = K, and K,,, C
K,.K"". Therefore, L C LK, C K,K"". Hence, K, K"" = K. ]

2.5 Finishing of the Proof

Now we finish the proof of the main theorems of local class field theory by showing that the
¢ we constructed satisfies the Theorem 2.1 and that Theorem 2.3 is true.
By construction, we know that ¢ ()| xun is the Frobenius element for each uniformizer 7

of K.

To prove the part (b) of the Theorem 2.1, take a finite abelian extension L/ K.

Lemma 2.27. The following diagram is commutative

Lt —% Gal(K®/L)

le |

K* T Gal(K”’b/K)

Proof. Since L* is generated by all uniformizers, it suffices to show that ¢, (II) = ¢ (Nm(II))
for all uniformizers II of L. By taking the maximal unramified extension of K in L, it suffices
to show the cases when L/ K is totally ramified and unramified respectively.

For details, see [Iwa86] Theorem 6.9. ]

Thus, ¢ induces a homomorphism ¢y, x : K*/Nm(L*) = Gal(L/K).

From the construction of ¢, it is easy to see that

Lemma 2.28. The homomorphism ¢ is injective and continuous. Moreover, ¢ (K*) is dense

in Gal( K%/ K), consisting of all elements T such that 7| jcun is a power of the Frobenius element.

The following proposition finishes the proof of the part (b) of Theorem 2.1.
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Proposition 2.29. As notations above, ¢k : K*/Nm(L*) — Gal(L/K) is an isomorphism.

Proof. Suppose ¢x ()|, = Id for some x € K*. Let U = L N K“". Suppose [U : K] = m.
Then ¢ (x)|y = Id implies that ¢ (x)|xun is @ power of o™ by the above lemma. Note that
Gal(K""/U) = Gal(LK""/L) = Gal(L""/L) and o™ corresponds to the Frobenius element
of L under this isomorphism. Therefore, ¢ (x)| un is a power of the Frobenius element of
L*"/L. By the above lemma again, there is y € L such that ¢ (y) = ¢x(x). Since ¢1(y) =
¢x (Nm(y)) and ¢ is injective, z = Nm(y). Thus, ¢,k is injective.

In order to prove the surjectivity, identify Gal(L/K) as Gal(K*/K)/Gal(K®/L). For
each [r] € Gal(L/K), 7Gal(K /L) is an open subset of Gal( K/ K). Since ¢ (K*) is dense
in Gal(K*/K), there is x € K* such that ¢ (z) € 7Gal(K®/L). Therefore, ¢y x(z) =
[7]. O

Finally, we should prove Theorem 2.3.

Lemma 2.30. Let K be a non-archimedean local field and L]/ K is a field extension. If [K :
Nm(L*)] is finite, then Nm(L*) is open.

Proof. Since Uy, is profinite, Uy, is compact. Thus, Nm(U},) is compact in K*, which is Haus-
dorff. Therefore, Nm(Uy) is closed in K*. Since Nm(Ur) = Nm(L*) N Uk, Uy, is a closed
subgroup with finite index in Uk, so is open in Uk. Since U is open in K*, Uy, is also open in

K*. Thus, Nm(L*) D Uy, is open. O

Proof. (of Theorem 2.3): By the part (b) of Theorem 2.1, we see that every norm group in K*
is of finite index. Thus, by the lemma above, they are open. Conversely, by the part (d) of the
Corollary 2.2, it suffices to show that each open subgroup of finite index H in K* contains a
norm group. Since H is open, H D (1 + m™) for some n. Since H is of finite index, there is
an integer s such that H O (1 4+ m") x sZ by the same proof as in Lemma 2.4. Let K be the
unramified extension of K of degree s and L = K ,, K. Therefore, ¢, ((1 +m") X SZ) =1.
It follows that (1+m") x sZ C Nm(L*). Since they have the same index in K*, (1+m") x sZ =
Nm(L*). O
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3 Background in Algebraic Topology for Ando’s Theorem on
Norm-Coherent Coordinates

In this section we introduce some backgrounds in algebraic topology. We will omit most details,
intending to provide an intuitive and quick introduction to Ando’s theorem on norm-coherent

coordinates. All topological spaces below are assumed to be pointed.

3.1 Generalized Cohomology and Homology Theories and Spectra

It is well-known that the singular cohomology and homology theory are characterized by sev-
eral axioms on the functors, called the Eilenberg-Steenrod axioms. Actually there are other
cohomology and homology theories share similar properties. We can generalize such axioms
by dropping out the dimension axiom. It turns out that the resulted generalized cohomology

and homology theories are very useful.

Definition 3.1 (Generalized Cohomology and Homology Theory). A generalized cohomology
theory is a sequence of contravariant functors A" from the homotopy category of pointed CW-
complexes to abelian groups satisfying the excision axiom with isomorphisms 9": h"*to Y —

h™ such that for each cofiber sequence A Axhx /A 4 YA, there is a long exact sequence

S A D R (XA D (X)) S Rm(A) S

where ¢ is the composition of ¢* and 9". Moreover, the sequence is natural.

A generalized homology theory is just the dual definition.
Actually such algebraic objects can be constructed from some geometric objects.

Definition 3.2 (Spectrum). (a) A prespectrum £ is a family of pointed topological spaces

{E, }nez and the structure maps X F,, — E,, 1, where ¥ E,, is the suspension of F,,.

(b) A spectrum is a prespectrum E such that the adjoint maps of the structure maps £,, —
QF, 1 (we will also call these the structure maps) are weak equivalences, where QF,, |

is the loop space of F,, 1.

(c) For a spectrum £, the homotopy groups of £ is well-defined by

T (E) == Tnik(Er),n+k >0
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(d) Suppose E, F' are two spectra. A map f: E — F' between spectra is a sequence of maps
fn: B, — F, such that the following diagram commutes for each n

B, — " R

| |

QEn+1 m QFn+1

(e) Suppose E is a spectrum. Then X" F is the spectrum defined by (X" E),, := E,1n-

(f) Let f, g be two maps between spectra E, F'. Then f, g are said to be homotopic if there
isamap H: [ — Sp(E, F) such that H(0) = f and H(1) = g, where Sp(E, F) is the
set of morphisms between E, F'. This is same to say a morphism H': £ — F! where

F! = Hom(I, F,) is a spectrum [Rez98].

Example 3.3. Given a space X, we can define the X X' by (¥*°X'),, = X"X ifn > 0
and just a point if n < 0. This is surely a prespectrum. However, it is not a spectrum. The
Structure maps are just injective. We can a make it to a spectrum by a process called spectri-
fication. If there is a spectrum E,, with injective structure maps w,,: E, — QFE, 1, then we
define (LE), := colim; Q¥ E, .}, and (Lw),, := colim;Q2*w,, 1. It can be shown that the result
sequence of spaces with structure maps is a spectrum and the spectrification is left adjoint to
the natural inclusion functor from spectra to prespectra [EKMM97]. From the construction,
we see that the homotopy groups invariant after the spectrification. We define the >*°X to be
the spectrification of X>° X'. In particular, we define the sphere spectrum S as the suspension
spectrum of S°.

It can be shown that > is left adjoint to the functor from spectra to spaces by taking the
space at degree 0 [Lurl7, Section 1.4]. Therefore, maps between >>° X and E is the same with
pointed maps between X and Ey. Similarly, [ X, E] = [ X, Ey|.

We can further define the smash product between spectra. However, the precise definition
is very tedious. (See [EKMMO97] for example) We just point out here the smash product makes

the homotopy category of spectra into a monoidal category with the unit element S.

Definition 3.4. A ring spectrum is a spectrum with the unit map 7: S — E and the multipli-

cation map m: E A E — FE, such that the following diagrams commute up to homotopy

E Mir L pAE

IdE/\nl \IdE\ lm

ENE —3 E
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EANEAE ™% pAp

IdE/\ml lm

Definition 3.5. Let E be a spectrum. The generalized cohomology and homology theory
associated with £, £* and F,, are defined by

E*(X) =[S "X, E]

E.(X) =m(XANE)

for any spectrum X. This is a generalized cohomology theory by [Ada95, Chapter I1I, Propo-
sition 6.1]

If E is a ring spectrum, we define the coefficient ring of £ as the ring £~*(S) = m,.(E) =
E.(S). The ring structure of the coefficient ring is induced by the ring structure on E. We will

simply denote it as E,.

Example 3.6. (a) Let K(A,n) be the Eilenberg-Maclane space. Then QK(A,n + 1) ~
K (A,n). Define the Eilenberg-Maclane spectrum H A by the spectrification of HA,, :=
K(A,n)forn > 0and a point forn < 0. Then HA,, = K(A,n) forn >0, HA"(X) =
H"(X;A)and HA,(X) = H,(X; A).

(b) For the sphere spectrum S and a pointed space X,
So(X) = T (B X A S) = 1, (2°X) = 73(X)

is the degree n stable homotopy group of X.

(c) Suppose X is a pointed space and E is a spectrum. Then

E"(S%®X) =[S "ES®X, E]
= [5®X, " E]

= [X, En]

Besides the axioms given in the definition of generalized cohomology theories, the gener-
alized cohomology theories associated with spectra have another important property, which is

sometimes called the additivity axiom or the wedge axiom.
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Proposition 3.7. Suppose E is a spectrum. Then

(VaerXa) = [[ B¥(X.

acl

Proof. By definition,

E"(VaerXa) = VaerXa, B = [ [[Xa, B = [[ B (X

a€el ael

]

A beautiful and fundamental result is that there is a correspondence between spectra and

generalized cohomology theories with the wedge axiom.

Theorem 3.8 (Brown Representability Theorem). If h* is a generalized cohomology theory
satisfying

(VaerXa) = [ [ (X

acl
then there is a spectrum E, such that h* = E*. If E is a ring spectrum, the associated general-

ized cohomology theory is called multiplicative.

Proof. For further references, see [Ada95, Chapter III, Remark 6.5]. [

3.2 Complex Orientations

In differentiable manifolds, we have the following definition of orientation of a manifold.

Definition 3.9 (Orientability of a Manifold). Suppose M is an n-manifold. Pick any two charts
(U, ), (V,1) of M. Then M is said to be orientable if there is a smooth atlas such that the

Jacobi matrix of each transition map 1) o ¢! has positive determinant at each point.

Note that the Jacobi matrix of the transition map is just the differential map of the transition
map. Therefore, the above definition can be rephrased in terms of the transition maps on the
tangent bundle. Then we can say that the tangent bundle 7'M is orientable if M is orientable.
More generally, we have the following definition of the orientability of a real vector bundle,

which is equivalent to the condition that M is orientable when we restrict to the case 7'M — M.
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Definition 3.10 (Orientability of a Real Vector Bundle). Suppose p: £ — B is a real vector
bundle of dimension n. Pick two bundle charts (U, ¢), (V,4) for p. Then the transition map
givesamap g: UNV — GL,(R) by

Yol (UNV)XR" = (UNV)xR", (z,v) — (z,9,(v))
Then p is said to be orientable if there is a bundle atlas such that every element in the image of
g, have positive determinant for all x.

In fact, the orientability of a bundle is encoded in the cohomology group.

Proposition 3.11. Suppose p: E — B is a real vector bundle of dimensionn. Letp': E' — B
be the subbundle where E' is E minus the zero section of p. Then p is orientable if and only if
there exists at € H"(E, E';7Z) such that t restricts to a generator in H"(F,, F}; Z) for each

b € B, where Fy, F} are fibers over bin E, E' respectively.
Proof. See [TD08, Theorem 17.9.4]. L

We can generalize this to arbitrary generalized cohomology theories associated to some ring

spectrum.

Definition 3.12 (E£-Orientation). Suppose £ is a ring spectrum. Let p: V' — B be a vector
bundle of dimension n. Then an E'-orientation on p is an element in £ (T h(V)) restricting to

a generator in £"(S™) = mo(E) on each fiber, where T'h(1/) is the Thom space of V.

Note that all real manifolds are HZ /2-orientable. It inspires us to define the orientability
of the generalized cohomology theory itself so that all vector bundles have a canonical choice

of orientation. Here we only want to focus on the complex vector bundles.

Definition 3.13 (Complex Orientation). A complex orientation on a ring spectrum £ is a
family of elements ¢, € E*" (T h(V)) for each n € N and complex vector bundle V' — B of

dimension n such that
(a) Forany b € B, cy restricts to a generator in 52" (Th(V,)) = E*(5?") = my(E).
(b) Forany map f: B’ — B, cp«v = f*(cv).

(c) For any two complex vector bundles Vi, Vs over B, cy ey, = ¢y, - cv,.
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We know that there is a universal 1-dimensional complex vector bundle v, over CP*>.

Theorem 3.14. A complex orientation is determined by the element c., € E* (Th(%)). There
is a bijection between the elements in E*(Th(v1)) = E*(CP™) that restricts to 1 in E*(S?) =

mo(E) and complex orientations of E.
Proof. See [TDO0S8, Theorem 19.0.1]. [l

Suppose E is complex oriented. Due to [TDO08, Theorem 19.1.4, Proposition 19.1.6], we
have E*(CP>) = E,[T] and E*(CP> x CP*) = E,[X,Y], where deg(T) = deg(X) =
deg(Y) = 2 and T is the chosen complex orientation of £. Note that CP> ~ BU(1). There-
fore, there is a symmetric multiplication map m: CP> x CP>* — CP*. The induced map
on cohomology rings sends T to an element f(X,Y) € E,[X,Y]. By the associativity and

commutativity of m, we have
Proposition 3.15. The above f(X,Y') is a formal group law with coefficients in E,.
Different choice of T" will generate different formal group laws. We also call 7" a coordinate.

Example 3.16. The Eilenberg-Maclane spectrum H A is complex oriented, where the T €
H A%(CP*) is the first Chern class. Then the formal group law associated to this is the ad-

ditive formal group law.

3.3 Complex Cobordism Theory

For each n € N, let BU(n) be the classifying space of U(n), the group of unitary matrices
of rank n. Let ~, be the universal complex n-bundle over BU(n). If we identify BU(n) as
the Grassmanian G, i.e., the space of n-dimensional subspaces in C*°. The sphere bundle
S(vn) of 7, consists of pairs (v, W), where W is an n-dimensional subspace in C* and v €
W is a unit vector. Then we have a map S(v,) — G,_1 ~ BU(n — 1) sending (v, W) to
the orthogonal complement of v in WW. This is a fiber bundle with fiber S°°, i.e., all the unit
vectors in C*. Since S* is contractible, BU(n — 1) ~ S(~,), which is homotopy equivalent
to the space obtained by ~,, minus the zero section of BU(n). Since v, ~ BU(n), Th(~y,) ~
BU(n)/BU(n—1). According to [TD08, Theorem 19.3.2], for a complex oriented cohomology
theory E, E*(BU(n)) = E.[ci, -+ ,c,]. Whenn = 1, ¢ is just the complex orientation.
Therefore, E* (BU(n)/BU(n — 1)) = ¢, E e, -+, cn], where deg ¢; = 2i.
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Let
MU(n) := X" 2"%*°Th(vy,) ~ X"?"%*°BU(n)/BU(n — 1)

Then ¢, is a map ¢,,: MU(n) — E. We have the natural maps
MU(n — 1) = 227 2"S°Th(y,_1) = ¥ "E2°Th(7,_1 © €) = Y 2"E*°Th(v,) = MU(n)

Let MU := colimMU(n), called the complex cobordism spectrum. It can be shown that ¢,
are compatible with the colimit [Lurl0, Lecture 6]. Thus, this gives a map ¢: MU — E.

In fact, MU admits a ring structure. Suppose 7, @ 7, is classified by BU(a) x BU(b) —
BU(a + b). It induces a map between Thom spectra MU(a) A MU(b) — MU(a + b). Passing
to the limit we get a ring map MU A MU — MU with the unit map S ~ MU(0) — MU.

Therefore, MU is a ring spectrum.
Proposition 3.17. The map ¢ is a map of ring spectra.
Proof. See [Lurl0, Lecture 6, Proposition 6]. ]

The inclusion 72E°CP>* = MU(1) — MU gives an element Tqy € MU?*(CP™).
Since c; is just the complex orientation, the ring spectrum map ¢: MU — E carries Ty to
our chosen complex orientation of .

The induced element Ty is a complex orientation of MU. In fact, the restriction of T q(y
to S? is given by MU?(CP*) — MU?(S5?) induced by S = MU(0) — MU(1) — MU, which
is the unit map of MU. Thus, the restriction of Ty is 1.

Theorem 3.18. Let E be a ring spectrum. Let Ty € MU(CP™) be a complex orientation of
MU. The map (¢p: MU — E) — qb(T MU) constructed above gives a bijection between ring

spectra maps MU — E and complex orientations of E.
Proof. See [Lurl0, Lecture 6, Theorem §]. O

Therefore, MU is the universal complex oriented generalized cohomology theory.
In fact, MU has a geometric interpretation, which accounts for its name “cobordism”. For

details and further references, please refer to [Car16].

Definition 3.19 (Complex Oriented Map). Suppose X is a compact smooth manifold. Then a

complex oriented map to X is a pair (f, v), where f is a smooth proper map f: M — X such
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that the relative dimension dim f := dim M — dim X is even and v: M — BU is continuous.

In addition, the map f can be factored by
M4 XxC'S X

where ¢ is a topological embedding and p is the natural projection map. The normal bundle of
M in X x C" has a complex bundle structure, which is characterized by v.
A complex oriented map of odd relative dimension is a pair (f,0): M — X x R, where f

is a complex oriented map of even relative dimension.

Lemma 3.20. Suppose f: M — X is complex oriented and g: Y — X is transversal to f.

Then the pullback of f along g is also complex oriented.
Proof. See [Carl6, Section 3.1, Pullbacks]. O
We can define an equivalence on complex oriented maps similar to bordism.

Definition 3.21 (Cobordant). Suppose f;: Z; — X are two complex oriented maps for: = 0, 1.
Then fy, f1 are said to be cobordant if there is a complex oriented map h: W — X x R such
that A is transversal to maps j;: X — X x R by z — (x,) and the pullback of h by each j; is

isomorphic to f;. This is an equivalent relation [Car16, Definition 3.1.3].

Definition 3.22. For any compact smooth manifold X, we define the following groups

U™(X) :={(f,v): complex oriented maps of relative dimension n} /cobordant

U™(X) = ®nezU"(X)
The addition on U™ (X) is given by
(fiv)+ (V) = (fuf,vuv)
We can also define a ring structure on U*(X) by

U*(X) x U*(X) = U*(X x X) & U*(X)
(fov) x (f V) = (f < fliv x V)

where A is the diagonal map.
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Theorem 3.23. For a compact manifold X,
U*(X) =2 MU (X)

given by the Pontrjagin-Thom construction.

Proof. See [Carl6, Proposition 3.2.1]. [

3.4 Morava E-Theories

We digress from the topology and come back to formal group laws temporarily. Suppose k is a

perfect field of characteristic p and F' is a formal group law over k.

Proposition 3.24. Let R be a commutative ring with characteristic p and I’ be a formal group
law over F. Then either [p|r = 0 or [p]lr = NTP" + O(T?"*1) for some n € N and nonzero

A € R, where |p|F is the p-series of F.
Proof. See [Lurl0, Lecture 12, Proposition 12]. O]

Definition 3.25 (Height of a Formal Group Law). Let v; be the coefficient of T ' in [p]F for
each i. Say F' has height n if v; = 0 for i < n and v,, # 0.

Definition 3.26 (Deformation of a Formal Group Law). Let F' be a formal group law over k£ and
A is a complete local ring with the maximal ideal m and residue field containing k. Suppose
m: A — A/m is the natural projection and i: k& — A/m is the inclusion. A deformation
of F to A is a formal group law F over A, such that 7, (F) = i,(F), where 7, act on each
coefficient. Let G, H be two deformations of F' over A. Then the two deformations are said to

be x-isomorphic if there is an isomorphism 0: G — H such that ,(c) = 7. Then define
Def(A, F) := {F is a deformation of F over A}/ % -isomorphic

Let W (k) be the Witt vector over k, which is a complete local ring over with the maximal
ideal (p) and residue field k. The precise definition of the Witt vector is too complicated. We
just give an example. If & = F, where ¢ = p™ for some prime number p, then W (k) is the
unique unramified extension of Z, of degree n. For references about the Witt vector, one may

consult [Rab14]. The following theorem classifies deformations of F'.
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Theorem 3.27 (Lubin-Tate). For any formal group law F of height n over k, there is a universal
Sformal group law T over % := W (k)[v1, -+ ,v,_1] such that for any complete local ring A

with residue field containing k, there is a bijection

Hom (%, A) — Def(A, F)
¢ ¢u(I)

Furthermore, v; is the coefficient of T?" in [p]r.
Proof. See [Lurl0, Lecture 21, Theorem 5 and Remark 8]. [

Recall that a complex oriented generalized cohomology theory gives a formal group law.
A natural converse question is that given a formal group law over a ring, is there a generalized
cohomology has the same coefficient ring and formal group law? The answer is given by the

Landweber exact functor theorem.

Theorem 3.28 (Landweber Exact Functor Theorem). Let F’' be a formal group law over a com-
mutative graded ring R. Let p be a prime number and v; be the coefficient of T% in plr. If
Vo, -+, v; forms a regular sequence, i.e., v; is not a zero-divisor in R/(vy, -+ ,v;_1), for all i
and p, then there is a homology theory F such that E, = R and the associated formal group

law is F'.
Proof. See [Lurl0, Lecture 16, Theorem 1]. [l

Remark. Recall that Brown representability theorem only applies to cohomology theory. How-
ever, when restricted to finite CW-complexes, it also works for homology theories using Spanier-
Whitehead duality [Rav92, Section 5.2]. Therefore, we obtain a spectrum representing the ho-

mology theory (over finite CW-complexes).

We want to apply the theorem to the universal deformation I' over Z. For the prime number
p = char(k), (vo = p,v1, -+ ,v,—1) is a maximal ideal of % and v, is invertible in k =
R [(vo, -+ ,v,) since F has height n. For a prime number p’ # p, p’ is invertible in %, so

Z[p = 0. Therefore, I" and Z satisfy the condition of Landweber exact functor theorem.

Definition 3.29 (Morava E-Theory). The generalized cohomology theory associated to the uni-
versal formal group law over Z[3*!] with deg(/3) = 2 is called Morava E-theory E,,, which

is also called Lubin-Tate theory.
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Remark. Morava E-theory plays an important role in chromatic homotopy theory. There is
an analogy of localization of rings in topology called Bousfield localization, through which we
can localize a space with respect to some spectrum. The localization with respect to Morava
E-theory stands for formal group laws with height < n. Furthermore, the homotopy fixed
points of E,, under the action of a certain group is homotopy equivalent to the localization
of the sphere spectrum with respect to Morava K-theory K (n), which is another important
spectrum in chromatic homotopy theory. The latter localization is essential in the computation
of stable homotopy groups. For detailed references in chromatic homotopy theory, see [Rav92]
and [Lurl0].

Remark. There are several terms involving “Lubin-Tate”. The first is the Lubin-Tate formal
group laws, which are important tools in the proof of explicit local class field theory as shown
in Section 2. The second is the Lubin-Tate theory, which is the theory of deformation of formal
group laws, i.e., Theorem 3.27. The third is the Morava E-theory above. The latter two terms
share the same name. Sometimes it is quite confusing.

There is some relationship between the three terms. Suppose K is a local field with residue
field k with characteristic p > 0 and |k| = q. Then Lubin-Tate formal group laws are the lifting
of formal group laws F over k such that [p|r = T, so that they can be classified by Theorem
3.27. On the other hand, the construction of Lubin-Tate spectrum is based on the Lubin-Tate

theory (of deformation) as shown above.

3.5 H,-Maps and Power Operations

Definition 3.30 (H.-Ring Spectrum and H,,-Map). A ring spectrum FE that is a commutative
monoid in the stable homotopy category is called an H.-ring spectrum. Morphisms between

H, spectra are called H,,-maps.
Remark. If E is a commutative monoid in the stable category, we can replace H, by F..

Example 3.31. The complex cobordism theory MU is E, [May77, §IV.2]. Morava E-theories
are Eo, [GH04, Corollary 7.6].

Power operation is an important structure on cohomology theories. It is a refinement of
taking powers in cohomology rings. The total power operation is of the form P,,: E°(X) —

E°(X x BY,,), where E is a cohomology theory, X is a spectrum and BY.,,, is the classifying
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space of the symmetric group of m elements. Actually, m-th power on E°(X) factors through
P,,. If a spectrum is H,, then it admits a power operation structure. Moreover, for two H -
spectra F, F', ring spectra morphisms such that power operations are compatible are equivalent

to H..-maps. By compatible, we mean that for a ring spectra morphism f: £ — F', the diagram

E
EO(X) s EO(X x BE,)

i |s

FOX) —— F(X x BY,)

commutes. Details can be found in [BMMSS86].

4 Proof of Ando’s Theorem via Coleman Norm Operators

4.1 Coleman Norm Operators

Letg = p" and k = IF,. Suppose K is the unramified extension of Q, of degree n with maximal
integer ring O, maximal ideal m = 7O and residue field k. Thus, p is an uniformizer of K.

Suppose Ok (7)) is the ring of Laurent series with coefficients in Ox. We assign the
“compact-open” topology to Ok (1)), i.e., a sequence {g,,} converges to g if and only if for
any compact subset A not containing 0 in m, and for each € > 0, there exists a positive integer
N = N(A,¢) such that |g,(a) — g(a)| < eforalla € Aandn > N. If g,, converge to g, then

they converge on each term. Then Coleman norm operator is given by:

Theorem 4.1. There exists a unique N, : O (T)) — Ok (1)) satisfying

Ny (9) o lole, = ] o(T +2, A)

AEAf,
forevery g € Ok ((T')). Moreover, N, is continuous and multiplicative.
Proof. See [Col79, Theorem 11, Corollary 12]. ]
The norm operator has the following properties.
Lemma 4.2. Leti > 1, g € 1 + w'[T] and h is a unit in Ok (T)). Then
@ Niylg) € 14w [T].
() A ()N () € 1+ wiT],
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Proof. See [Col79, Lemma 13]. The part (b) looks different from [Col79, Lemma 13(b)], which
said Jl/bff (h)/ gbe/l/FZ}_l (h) € 1+ 7' Ok[T]. Because Coleman generalized the construction of the
norm operator to a complete unramified extension H/ K, he needed to take the Frobenius map
¢ of Gal(H/K) into consideration. However, we only need to consider K itself, so ¢ = Idg

here. N

Then we see that .#;2°(h) := lim 47 (h) exists. By Lemma 4.2(a), A472° (1 +m[T]) = 1.

1—>00

Since JVFJ, is continuous,

Ny (N2 (1) = Ay (lim A2, () = Tim N, (A, () = A= (1)

1—00 1—00

Moreover, .4} is multiplicative since A7, is.

4.2 Proof of Ando’s Theorem in a Special Case

Let ®(7") be the Honda formal group law over & of height n, i.e., [p|s(T") = T, where [p|s(T)
is the p-series of ®. Suppose m = p. For any f € F,, F} is a Lubin-Tate formal group law
and [p]p, (T') = [7]7,(T) = f(T) by Proposition 2.12. Thus, F is a lifting of ®. Conversely,
every lifting of ® to Ok has p-series in F;, so it is a Lubin-Tate formal group law.

Given a complex oriented cohomology theory F, then there is a map between ring spectra
MU — FE by Theorem 3.18. One may ask whether the power operation are compatible under
such map. When £ = E,,, Ando gave a criterion on when the power operations of MU, F,
are compatible under the map MU — E,, in terms of the formal group law associated to the

map [And95, Theorem 4].

Theorem 4.3 (Ando). Suppose k = IF,,. In each x-isomorphism class of lifting of ® to the com-
plete local ring # = W (k)[vy, - -+, vo_1][u®], there is a unique formal group law F satisfying

We(@) = [[ T+

AEAR

where A is the kernel of [p]r.

Remark. In the age of Ando, I, classified the Honda formal group law of height n over k = TF,,.

Nowadays, we define I, in the way shown in Subsection 3.4.

Since Z classifies deformation of a formal group law, we expect such statement holds for

arbitrary complete local ring. In fact, we will prove
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Theorem 4.4. Suppose l is a perfect field of characteristic p and ® is the Honda formal group
law of height n overl, i.e., [plg = TP". In each x-isomorphism class of lifting of ® to a complete
local domain R with residue field containing | such that p # 0 in R, there is a unique formal
group law F satisfying

Ple(T) = 1] (T +r N (1)

ANEAR

where A is the kernel of [p|r.

Remark. Here we require p # 0 in R because we need [p|r to be able to be canceled in

composition and multiplication. Note that the ring (E,,). satisfies the condition.

Remark. Actually, [Zhu20, Theorem 1.2] proved a more general statement for not only Honda
formal group law, but also arbitrary formal group law of finite height over | and R can be any
complete local ring with residue field containing |. However, we will only prove the relative

specific version in this thesis.
We will prove the theorem in a special case in this subsection via Coleman norm operator.

Theorem 4.5 (Ando, Special Case). In each x-isomorphism class of lifting of ® to Ok, there is

a unique formal group law Fy satisfying

[-p]Ff(T) = H (T +Ff /\)
/\GAfJ
In terms of the norm operator, we see that a Lubin-Tate formal group law satisfies (1) if and
only if
Ple, (T) = 1 (T 45, ) = (A (T) 0 [l )(T)

>\€Af,1
Since [p|r, (T') has a composition inverse in K17, we can cancel the f from both sides, so that
(1) is equivalent to

N (T) =T

Fix a lifting Fy of . Pick u € T+ nTOk[T] = T + Tm[T]. Then there is an f, € F, such
thatuo Fyou™' = F},. Since f = [pF; and fu = [plp;, s fu = uo fou tand Fy, = Fuofou-1.
By the above discussion, we are reduced to showing that there is a unique u € 7'+ Tm|[7T] such
that

Ny, (T) =T
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Note that u induces a bijection from Af; to Ay, 1. By definition,

(‘/‘/Ffu (T) © [p]Ffu)(T) = H (T +Ffu )‘)

A€Afy 1

This is equivalent to

(A, (®) owo [plp 0w )(T) = [[ (T +p,, uln))

)\61\f71

=TT (e )

)\GAfyl

= I woFy(u (1))

)\GAfJ

— H U o (uil(T) +r )\)

)\EAfJ

- (‘/%f (u) o [p]Ff) (u_l(T))
By canceling [p], o u™! from both sides, (A%, (T) o u)(T) = A, (u)(T). Therefore,
Ne, (T) =T & N, (u) = u

Consequently, it remains to show the following.
Proposition 4.6. Given any f € F, there is a unique w € T+ Tw[T], such that Ny (u) = .

Proof.

Existence: Suppose f; := A%, (T)/JVFif_l(T) € 1+ m[T]. Then #;(T) = Tfifo---.
Itis easy to see that fi f>--- € 1+ m[T7], so A5°(T) € T'+ Tm[T]. Therefore, u = A (T)
satisfies the condition.

Uniqueness: If A%, (u) = u, then Flf(u) = u for each 4. Thus, 477 (u) = u after taking
the limit. Since u € T'+ Tm[T], there is & € 1 + m[7] such that u = T'a. Then

w= N () = (DN (@) = AT

which finishes the proof. [l

Remark. The condition Np(u) = wu is equivalent to say that u is norm-coherent in the sense of

[Col79]. To be precise, suppose vy, is a generator of Ay, as a Ox-module and [p|p(Vp41) = Un.
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We have
Np(w)(vn) = Nk, ovi1 /5r o (0(0n41))

by [Col79, Corollary 12(ii)]. Thus, Nr(u) = u is equivalent to say that

u(?}n) = NKﬂ,n+1/Kw,n <u<vn+1))

That is, uw maps the sequence v,, to a norm coherent sequence.
Suppose M~ = {g € Ox(T))*: Nr(g) = g} is the subset in O (1'))* consisting of norm-

coherent series. Then the uniqueness of u is a consequence of the exact sequence of groups:
N2
1= 1+m[T] = Ox(T)" = My —1

[Col79, Proposition 14].

4.3 Generalization of the Norm Operators

In this subsection, we aim to prove Theorem 4.4 following the proof in the last subsection.
Observe that the proof in Subsection 4.2 actually does not use the properties of Ok being a
complete discrete valuation ring with uniformizer p. Therefore, we only need to generalize
Theorem 4.1 and Lemma 4.2 to R.

Suppose F' is a lifting of ® to R and m is the maximal ideal of R. Since [p|p = T?"
(mod m), not all coefficients of [p]r are in m. By the Weierstrass preparation theorem [Lan02,
Chapter IV, Theorem 9.2], there is a unit v in R[7"] and a monic polynomial 5(7") = T* +
bs 1T 1 + -+ by, where b; € m for all 4, such that [p| = v - 3. Then the coefficient of T in
[p]F is not in m. Therefore, s = p™. Note that roots of [p]r are the same with the roots of 5. Let
A be the set of roots of [p], which is a finite subset of a larger ring R obtained by R adjoining
roots of 3. Since p # 0in R, 0 is a simple root of [p] 7. Forany A € A, [p]p (T —r ) = [p]#(T).
Therefore, \ is also a simple root of [p] . Thus, roots of [p] are distinct in R. Therefore, the
set A has exactly p™ elements. The following proofs basically follow the corresponding proofs

in [Col79].

Lemmad.7. If g € R[T] and g(T+r\) = g(T) forall X € A, then there is a unique h € R[T]
such that h o [plr = g.

Proof. The uniqueness follows from that fact that [p|r can be canceled.
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Let go = g. Suppose that we have constructed a; € R for 0 < ¢ < m — 1 such that
9— Y alple = PIF - gm

for some g,, € R[T]. Note that (T +r A\) = ¢g(T) and [p|p(T +r A) = [p]r(T). We have
gm(T +7 A\) = gm(T). Therefore, (gm — gm(O)) (A\) =0 forall A € A. By [Lan02, Chapter IV,
Theorem 9.1], there is a g,, .1 € R[T] and r,,, € R[T] such that g, — g,»(0) = [plF * Gms1 + Tm

and deg(r,,) < p". Then r,, vanishes on A. Since A has p™ elements, r,, = 0. Let a,, = g,,(0).

Then
9= ailpy € (\PI=RIT] =0
=0 i=0
Then h =) .2, a;T" is the required element. []

Now we also give R[T] the compact-open topology similar to O [T]. Here R is assigned

with the m-adic topology.

Theorem 4.8. There is a unique operator N : R[T]| — R[T] such that for any g € R[T],

Nio(g) o [plr(T) = [[ 9(T +r N)

AEA
Moreover, A is multiplicative and continuous.

Proof. Note that the right hand satisfies the condition of last lemma. Thus, there is a unique
N satisfying the formula.
For any g,h € R[T],

Nio(gh) o [plr(T) = [] 9h(T +£ N)

= (A2(g) © [l (1)) - (He(h) o [p] (1))
= (A (g) - Ar(h)) o [p]r(T)

Canceling [p|r from both sides we get A%(gh) = A% (g) - N5 (h).
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Suppose {g, } converges to g.

(lim%(gn)) o[plr = hm(%(gn) o [p]F) = lim H In(T +F A)

AEA
=[] 9(T +r X = A2(9) o [p]r
AEA
By canceling [p|r from each side, we get lim A% (g,,) = A= (g). O

Remark. Lemma 4.7 may fail when p = 0 in R. Suppose R = F,[T'] and F is just the Honda
Sformal group law. Then A = {0}. Thus, for any g € R[T], g(T +r \) = g(T) for all X € A.
Then the lemma is equivalent to say that [plp = T*" is invertible in composition, which is
ridiculous.

However, the norm operator still exists. Now the condition reads

.

Np(g)(TP") = ¢""(T)

Thus, Nz(g) is the power series obtained from g such that each coefficient of N is the p"-th

power of the corresponding coefficient in g.
Note that the proof in subsection 4.2 only takes the limit of .4z on 1 + m[7"] and 7.
Lemma4.9. Letg € 1 + m'[T] and i > 1. Then
(@) Ar(g) € 14+m™HT].
(b) NHT) [N H(T) € 1+m'[T].

Proof.  (a) By definition, A7(g)o[p]r = [Iyep 9(T+rA). Suppose g(T') = 1+ ¢;T7,

where ¢; € m". Since 7 > 1, terms containing c¢;, ¢;, must lie in m**!. Therefore,

Ne(g)oplr =1+ ZZ@(T +r M) (mod m“tt)

A€A j=0

= 1+§:ZCJ(T+F)\)j

7=0 AeA

=1+ Z ¢;(p"T7 + Zpk(A)Tk)
=0 k=0

where px (A) is a symmetric function on A € A. By [Art91, Theorem 16.1.6], px()\) is a

polynomial of non-leading coefficients in 3, i.e., by, - - - , bs_1. Since p™, by, - - - ,bs_1 are
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inm,

Nr(g)oplrp=1 (mod m”l)

Next we prove by induction on  that if h € R[T] and ho [p]r € m'[T], then h € m*[T7]
(here i > 0). Taking h = A% (g) — 1 completes the proof of (a). The case is trivial when
t = 0. Suppose ¢ > 1 and the statement holds for  — 1. By the induction hypothesis,
h € m"'[T]. Suppose h(T) = >°7d;T7, where d; € m'~'. If {j: d; ¢ m'} is non-
empty, let jy be the minimal number in {;j: d; & m'}. Suppose [p|r = >~ a;T”. Since
® is of height n, [p|r = a,, T?" + O(T?"*1) (mod m). Thus,

d;, [p]JFO = djoapnTjop” + O(T™"" 1) (mod m?)

where a,,, is invertible in R. Since h o [p|r € m'[T], there is a non-negative integer

=1 — m? at degree jop".

m # jo such that d,,[p] contains a term with coefficient in m
If m < jo, then d,,, € m' by the minimality of j,, contradiction. If m > j,, suppose the
term is d,,aj, a;, - - - a;, T2 Tim where j; + jo + -+ + jm = Jop™. Since m > jo,

there must be a j, < p". Then a;, € m, contradiction. Therefore, h € m[T7.

(b) By (a), we only need to show that case when i = 1. Since [p]r = TP" (mod m),

Ne(T7") = Np o [plp(T) = [[(T+r X)) (mod m)

By arguments similar to (a), [[,.,(T +r A) = T7" (mod m). Hence, A5(T) = T
(mod m), so A%(T)/T = 1 (mod T~ 'm[T]). It remains to show that T | A4%(T) in
R[T]. Tt is equivalent to say that .4#%(7")(0) = 0. Since 0 € A,

Ne(T)(0) = Ap(T) o [plr(0) = [JA =0

A€A

]

Remark. In the proof of (a), we do not require that ¢ is a Honda formal group law. We just
need ® to be of height n < oo.

However, Part (b) of the last lemma may not be true when ® is not a Honda formal group
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law. Suppose ® has height n. Note that
Ne([ple) =T (mod m)

Suppose Nw(T) = > ¢;T7 and [ple = Y a;T7. Then by direct calculation we find that c; =

-3
—0n Ggpn (mod m) may not be zero.
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